organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4,4',6,6'-Tetra-*tert*-butyl-2,2'-[butane-1,4-diylbis(nitrilomethanylylidene)]diphenol

Jia Ti Tee, Norbani Abdullah and Hamid Khaledi*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: khaledi@siswa.um.edu.my

Received 7 October 2011; accepted 10 October 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.114; data-to-parameter ratio = 20.1.

The title compound, $C_{34}H_{52}N_2O_2$, is centrosymmetric, the midpoint of the central C–C bond being located on an inversion centre. Intramolecular O–H···N and weak C–H···O hydrogen bonds are observed, but no significant intermolecular interactions occur in the crystal structure.

Related literature

For structures of some metal complexes of the title Schiff base, see: Doyle *et al.* (2007); Keizer *et al.* (2002*a*,*b*).

• Crystal data

 $\begin{array}{l} C_{34}H_{52}N_2O_2\\ M_r = 520.78\\ \text{Monoclinic, } P_{21}/c\\ a = 19.1255 \ (4) \ \text{\AA}\\ b = 9.5702 \ (2) \ \text{\AA}\\ c = 8.6312 \ (1) \ \text{\AA}\\ \beta = 90.383 \ (1)^\circ \end{array}$

 $V = 1579.78 (5) Å^{3}$ Z = 2 Mo K\alpha radiation \(\mu = 0.07 mm^{-1}\) T = 100 K 0.26 \times 0.15 \times 0.06 mm

Data collection

```
Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{min} = 0.983, T_{max} = 0.996
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of
$wR(F^2) = 0.114$	independent and constrained
S = 1.03	refinement
3631 reflections	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
181 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

14602 measured reflections

 $R_{\rm int} = 0.024$

3631 independent reflections

3039 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D - \mathbf{H} \cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$O1 - H1 \cdot \cdot \cdot N1$	0.927 (16)	1.735 (17)	2.5840 (13)	150.8 (14)
$C9-H9A\cdots O1$	0.98	2.29	3.0720 (15)	123

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010).

Financial support from the University of Malaya is highly appreciated (PPP grant No. PS342/2009 C)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5350).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Doyle, D. J., Gibson, V. C. & White, A. J. P. (2007). *Dalton Trans.* pp. 358–363. Keizer, T. S., De Pue, L. J., Parkin, S. & Atwood, D. A. (2002a). J. Cluster Sci. 13, 609–620.

Keizer, T. S., De Pue, L. J., Parkin, S. & Atwood, D. A. (2002b). J. Am. Chem. Soc. 124, 1864–1865.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, o2954 [doi:10.1107/S1600536811041614]

4,4',6,6'-Tetra-tert-butyl-2,2'-[butane-1,4-diylbis(nitrilomethanylylidene)]diphenol

J. T. Tee, N. Abdullah and H. Khaledi

Comment

The title Schiff base has been displayed ambidentate ligation behavior towards metal ions (Doyle *et al.*, 2007; Keizer *et al.*, 2002*a,b*). Herein, wish to report the crystal structure of the free ligand, obtained through the condensation reaction of 3,5-di-*tert*-butyl-2-hydroxybenzaldehyde and 1,4-diaminobutane. The molecule lies across a crystallographic inversion centre. The imino group is almost coplanar with the phenyl ring [dihedral angle = 3.00(13)] and adopts an *E* configuration. The hydroxyl group is engaged in an intramolecular O—H···N hydrogen bond with the imine group. Moreover, it acts as an acceptor in two intramolecular C—H···O hydrogen bonds (Table 1). The structure does not display any significant intermolecular interactions.

Experimental

3,5-Di-*tert*-butyl-2-hydroxybenzaldehyde (5.86 g, 25 mmol) was dissolved in methanol (50 ml) in a round-bottomed flask fitted with a reflux condenser. The solution was heated, followed by portionwise addition of 1,4-diaminobutane (1.10 g; 12.5 mmol). The pale yellow solution formed was then gently refluxed for 3 h. The product obtained on cooling was recrystallized from ethanol at room temperature to give X-ray quality crystals of the title compound.

Refinement

The C-bound H atoms were placed at calculated positions and refined as riding on their parent atoms, with C–H = 0.95 (aryl), 0.98 (methyl) and 0.99 (methylene) Å. The O-bound H atom was located in a difference Fourier map and refined freely. For all H atoms $U_{iso}(H)$ were set to $1.2-1.5U_{eq}(\text{carrier atom})$.

Figures

Fig. 1. Molecular structure of the title compound with displacement ellipsoids at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

4,4',6,6'-Tetra-tert-butyl-2,2'-[butane-1,4- diylbis(nitrilomethanylylidene)]diphenol

$C_{34}H_{52}N_2O_2$	F(000) = 572
$M_r = 520.78$	$D_{\rm x} = 1.095 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo Ka radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4857 reflections

<i>a</i> = 19.1255 (4) Å
<i>b</i> = 9.5702 (2) Å
c = 8.6312(1) Å
$\beta = 90.383 (1)^{\circ}$
V = 1579.78 (5) Å ³
Z = 2

Data collection

Bruker APEXII CCD diffractometer	3631 independent reflections
Radiation source: fine-focus sealed tube	3039 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.024$
φ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -24 \rightarrow 24$
$T_{\min} = 0.983, T_{\max} = 0.996$	$k = -12 \rightarrow 12$
14602 measured reflections	$l = -11 \rightarrow 11$

 $\theta = 2.4-30.3^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 100 KPlate, yellow

 $0.26 \times 0.15 \times 0.06 \text{ mm}$

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0533P)^2 + 0.5079P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.38365 (4)	0.98230 (9)	0.47339 (10)	0.0267 (2)
H1	0.4145 (8)	0.9488 (17)	0.3998 (19)	0.040*
N1	0.43079 (5)	0.86964 (11)	0.22286 (12)	0.0276 (2)
C1	0.31824 (6)	0.96886 (11)	0.41401 (12)	0.0198 (2)
C2	0.26044 (6)	1.01998 (11)	0.49629 (12)	0.0193 (2)
C3	0.19476 (6)	1.00283 (11)	0.42796 (12)	0.0203 (2)
Н3	0.1553	1.0373	0.4824	0.024*
C4	0.18292 (6)	0.93820 (12)	0.28429 (12)	0.0197 (2)
C5	0.24129 (6)	0.88907 (11)	0.20702 (12)	0.0196 (2)
Н5	0.2353	0.8443	0.1096	0.024*
C6	0.30834 (6)	0.90361 (11)	0.26843 (12)	0.0194 (2)
C7	0.26927 (7)	1.09122 (12)	0.65518 (12)	0.0230 (3)
C8	0.31935 (8)	1.21639 (13)	0.64423 (15)	0.0348 (3)
H8A	0.3004	1.2849	0.5707	0.052*
H8B	0.3651	1.1842	0.6085	0.052*
H8C	0.3244	1.2599	0.7465	0.052*
С9	0.29756 (7)	0.98400 (12)	0.77258 (13)	0.0254 (3)
H9A	0.3430	0.9492	0.7377	0.038*
H9B	0.2647	0.9058	0.7807	0.038*
H9C	0.3030	1.0286	0.8741	0.038*
C10	0.19963 (7)	1.14567 (14)	0.71697 (14)	0.0323 (3)
H10A	0.2074	1.1915	0.8172	0.049*
H10B	0.1672	1.0674	0.7300	0.049*
H10C	0.1797	1.2130	0.6434	0.049*
C11	0.10988 (6)	0.92199 (13)	0.21236 (13)	0.0246 (3)
C12	0.09358 (7)	0.76642 (15)	0.19055 (17)	0.0357 (3)
H12A	0.0932	0.7200	0.2918	0.053*
H12B	0.1294	0.7237	0.1252	0.053*
H12C	0.0477	0.7560	0.1407	0.053*
C13	0.10838 (7)	0.99276 (15)	0.05301 (15)	0.0339 (3)
H13A	0.0630	0.9757	0.0029	0.051*
H13B	0.1457	0.9542	-0.0114	0.051*
H13C	0.1154	1.0936	0.0656	0.051*
C14	0.05296 (7)	0.9870 (2)	0.31222 (17)	0.0449 (4)
H14A	0.0526	0.9413	0.4138	0.067*
H14B	0.0074	0.9745	0.2615	0.067*
H14C	0.0623	1.0870	0.3255	0.067*
C15	0.36766 (6)	0.85464 (12)	0.17746 (13)	0.0225 (2)
H15	0.3589	0.8100	0.0810	0.027*
C16	0.48707 (6)	0.82786 (14)	0.11850 (16)	0.0312 (3)
H16A	0.4676	0.7714	0.0324	0.037*
H16B	0.5214	0.7697	0.1755	0.037*
C17	0.52336 (6)	0.95676 (14)	0.05349 (15)	0.0294 (3)
H17A	0.5653	0.9268	-0.0045	0.035*
H17B	0.5393	1.0163	0.1407	0.035*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0244 (4)	0.0311 (5)	0.0246 (4)	-0.0036 (4)	-0.0030 (3)	-0.0032 (3)
N1	0.0240 (5)	0.0289 (6)	0.0299 (5)	-0.0012 (4)	0.0047 (4)	-0.0003 (4)
C1	0.0244 (6)	0.0152 (5)	0.0196 (5)	-0.0026 (4)	-0.0019 (4)	0.0027 (4)
C2	0.0299 (6)	0.0126 (5)	0.0155 (5)	0.0009 (4)	-0.0011 (4)	0.0015 (4)
C3	0.0273 (6)	0.0173 (5)	0.0163 (5)	0.0051 (4)	0.0019 (4)	0.0010 (4)
C4	0.0241 (6)	0.0183 (5)	0.0167 (5)	0.0011 (4)	-0.0012 (4)	0.0022 (4)
C5	0.0271 (6)	0.0169 (5)	0.0149 (5)	-0.0014 (4)	0.0005 (4)	-0.0011 (4)
C6	0.0245 (6)	0.0150 (5)	0.0188 (5)	-0.0013 (4)	0.0023 (4)	0.0014 (4)
C7	0.0365 (7)	0.0163 (5)	0.0163 (5)	0.0007 (5)	-0.0025 (4)	-0.0011 (4)
C8	0.0597 (9)	0.0205 (6)	0.0241 (6)	-0.0090 (6)	-0.0021 (6)	-0.0033 (5)
C9	0.0379 (7)	0.0204 (6)	0.0178 (5)	0.0002 (5)	-0.0058 (5)	-0.0004 (4)
C10	0.0474 (8)	0.0301 (7)	0.0195 (5)	0.0118 (6)	-0.0011 (5)	-0.0064 (5)
C11	0.0242 (6)	0.0301 (6)	0.0194 (5)	0.0025 (5)	-0.0021 (4)	-0.0005 (4)
C12	0.0289 (7)	0.0346 (7)	0.0434 (8)	-0.0081 (6)	-0.0053 (6)	0.0044 (6)
C13	0.0378 (7)	0.0374 (7)	0.0263 (6)	-0.0042 (6)	-0.0118 (5)	0.0057 (5)
C14	0.0272 (7)	0.0746 (12)	0.0327 (7)	0.0171 (7)	-0.0063 (6)	-0.0116 (7)
C15	0.0276 (6)	0.0184 (5)	0.0215 (5)	-0.0020 (4)	0.0035 (4)	-0.0001 (4)
C16	0.0245 (6)	0.0314 (7)	0.0377 (7)	0.0021 (5)	0.0075 (5)	-0.0009 (5)
C17	0.0192 (6)	0.0355 (7)	0.0334 (6)	-0.0014 (5)	0.0037 (5)	-0.0032 (5)

Geometric parameters (Å, °)

O1—C1	1.3549 (14)	С9—Н9С	0.9800
O1—H1	0.927 (16)	C10—H10A	0.9800
N1—C15	1.2749 (15)	C10—H10B	0.9800
N1—C16	1.4638 (15)	C10—H10C	0.9800
C1—C2	1.4058 (16)	C11—C14	1.5257 (18)
C1—C6	1.4147 (15)	C11—C12	1.5325 (18)
C2—C3	1.3939 (16)	C11—C13	1.5332 (16)
C2—C7	1.5398 (14)	C12—H12A	0.9800
C3—C4	1.4028 (15)	C12—H12B	0.9800
С3—Н3	0.9500	C12—H12C	0.9800
C4—C5	1.3863 (15)	С13—Н13А	0.9800
C4—C11	1.5328 (16)	С13—Н13В	0.9800
C5—C6	1.3914 (16)	C13—H13C	0.9800
С5—Н5	0.9500	C14—H14A	0.9800
C6—C15	1.4613 (15)	C14—H14B	0.9800
C7—C10	1.5295 (17)	C14—H14C	0.9800
С7—С8	1.5371 (17)	С15—Н15	0.9500
С7—С9	1.5380 (15)	C16—C17	1.5244 (18)
C8—H8A	0.9800	C16—H16A	0.9900
C8—H8B	0.9800	C16—H16B	0.9900
C8—H8C	0.9800	C17—C17 ⁱ	1.525 (3)
С9—Н9А	0.9800	C17—H17A	0.9900

С9—Н9В	0.9800	C17—H17B	0.9900
C1—O1—H1	107.4 (10)	H10A—C10—H10C	109.5
C15—N1—C16	118.61 (11)	H10B-C10-H10C	109.5
01—C1—C2	120.20 (10)	C14—C11—C12	108.67 (12)
O1—C1—C6	119.71 (10)	C14—C11—C4	112.44 (10)
C2—C1—C6	120.09 (10)	C12—C11—C4	109.40 (10)
C3—C2—C1	117.05 (10)	C14—C11—C13	108.51 (11)
C3—C2—C7	121.48 (10)	C12—C11—C13	108.45 (10)
C1—C2—C7	121.47 (10)	C4—C11—C13	109.28 (10)
C2—C3—C4	124.44 (10)	C11—C12—H12A	109.5
С2—С3—Н3	117.8	C11—C12—H12B	109.5
С4—С3—Н3	117.8	H12A—C12—H12B	109.5
C5—C4—C3	116.69 (10)	C11-C12-H12C	109.5
C5—C4—C11	120.36 (10)	H12A-C12-H12C	109.5
C3—C4—C11	122.95 (10)	H12B-C12-H12C	109.5
C4—C5—C6	121.73 (10)	C11—C13—H13A	109.5
С4—С5—Н5	119.1	C11—C13—H13B	109.5
С6—С5—Н5	119.1	H13A—C13—H13B	109.5
C5—C6—C1	120.00 (10)	C11—C13—H13C	109.5
C5—C6—C15	118.70 (10)	H13A—C13—H13C	109.5
C1—C6—C15	121.27 (10)	H13B-C13-H13C	109.5
C10—C7—C8	107.48 (10)	C11—C14—H14A	109.5
С10—С7—С9	107.51 (10)	C11-C14-H14B	109.5
C8—C7—C9	110.11 (10)	H14A—C14—H14B	109.5
C10—C7—C2	111.77 (10)	C11—C14—H14C	109.5
C8—C7—C2	110.79 (9)	H14A—C14—H14C	109.5
C9—C7—C2	109.11 (9)	H14B-C14-H14C	109.5
С7—С8—Н8А	109.5	N1-C15-C6	122.40 (10)
С7—С8—Н8В	109.5	N1-C15-H15	118.8
H8A—C8—H8B	109.5	C6-C15-H15	118.8
С7—С8—Н8С	109.5	N1-C16-C17	110.12 (11)
H8A—C8—H8C	109.5	N1—C16—H16A	109.6
H8B—C8—H8C	109.5	C17—C16—H16A	109.6
С7—С9—Н9А	109.5	N1—C16—H16B	109.6
С7—С9—Н9В	109.5	C17—C16—H16B	109.6
Н9А—С9—Н9В	109.5	H16A—C16—H16B	108.1
С7—С9—Н9С	109.5	C16—C17—C17 ⁱ	113.31 (13)
Н9А—С9—Н9С	109.5	C16—C17—H17A	108.9
Н9В—С9—Н9С	109.5	C17 ⁱ —C17—H17A	108.9
C7—C10—H10A	109.5	C16—C17—H17B	108.9
C7 C10 H10R	109.5	017 ⁱ 017 1117D	108.9
	109.5	CI/-CI/-HI/B	107.7
HIOA—CIO—HIOB	109.5	HI/A—CI/—HI/B	107.7
C = C = H = 10	109.5		
Symmetry codes: (1) $-x+1$, $-y+2$, $-z$.			
Hydrogen-bond geometry (Å, °)			
D—H···A	<i>D</i> —Н	H···A	D···A D—H···A

supplementary materials

O1—H1…N1	0.927 (16)	1.735 (17)	2.5840 (13)	150.8 (14)
C8—H8B···O1	0.98	2.29	2.9546 (16)	125.
С9—Н9А…О1	0.98	2.44	3.0720 (15)	122.

